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We extend an earlier method for solving kinetic boundary layer problems to the 
case of particles moving in a spatially inhomogeneous background. The method 
is developed for a gas mixture containing a supersaturated vapor and a light 
carrier gas from which a small droplet condenses. The release of heat of 
condensation causes a temperature difference between droplet and gas in the 
quasistationary state; the kinetic equation describing the vapor is the stationary 
Klein-Kramers equation for Brownian particles diffusing in a temperature 
gradient. By means of an expansion in Burnett functions, this equation is trans- 
formed into a set of coupled aIgebrodifferential equations. By numerical integra- 
tion we construct fundamental solutions of this equation that are subsequently 
combined linearly to fulfill appropriate mesoscopic boundary conditions for par- 
ticles leaving the droplet surface. In view of the intrinsic numerical instability of 
the system of equations, a novel procedure is developed to remove the 
admixture of fast growing solutions to the solutions of interest. The procedure 
is tested for a few model problems and then applied to a slightly simplified 
condensation problem with parameters corresponding to the condensation of 
mercury in a background of neon. The effects of thermal gradients and thermo- 
diffusion on the growth rate of the droplet are small (of the order of 1%), but 
well outside of the margin of error of the method. 

KEY WORDS: Condensation; kinetic boundary layers; Brownian motion; 
thermodiffusion; numerical integration methods. 

1. I N T R O D U C T I O N  A N D  S U R V E Y  

T o  c a l c u l a t e  t he  g r o w t h  r a t e  of  a l i q u i d  d r o p l e t  c o n d e n s i n g  f r o m  a gas  

m i x t u r e  c o n t a i n i n g  its s a t u r a t e d  v a p o r  (1-3~ d u r i n g  t he  s t age  in  w h i c h  its 

r a d i u s  is c o m p a r a b l e  to  t he  m e a n  free p a t h  in  t h e  gas,  o n e  m u s t  d e t e r m i n e  
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the structure of the kinetic boundary layer that develops around the 
droplet. This in turn requires solving the Boltzmann equation for the space 
surrounding the droplet, which far enough below the critical point can be 
assumed to be spherical. Since the temperature of the droplet is typically 
only a few percent higher than that of the gas at infinity, (3) it appears 
reasonable to base such a treatment on the linear Boltzmann equation, in 
which the collision operator is linearized around the equilibrium state of 
the gas at infinity. Recently, methods were developed that allow the deter- 
mination of the growth rate to an accuracy of better than 1% within the 
context of the linear Boltzmann equation. (3-6) Once such an accuracy has 
been reached, one should also try to estimate the magnitude of effects not 
contained in this simplest linear description. The logical next step is to 
consider a Boltzmann equation linearized around an appropriate local 
equilibrium distribution. 

Though the basic strategy used in our earlier papers to solve kinetic 
boundary layer problems--writing the solution as a linear combination of 
fundamental solutions, with coefficients chosen to satisfy the boundary 
conditions at infinity and at the droplet surface--can still be used, the 
techniques used to obtain the fundamental solutions must be modified. 
By expanding around a space-dependent local equilibrium solution, one 
obtains a linear kinetic equation with a space-dependent collision operator. 
As a consequence, the space dependence of the fundamental solutions can 
no longer be expressed in terms of known functions (spherical Hankel 
functions of imaginary argument); hence, a larger part of our program has 
to be carried out by purely numerical methods. However, we can still 
exploit the spherical symmetry of our problem to reduce its complexity. As 
before, ~3'4) this is done by means of an expansion in terms of Burnett func- 
tions in the velocity variable. This reduces the partial differential equation 
for the distribution function to a set of coupled ordinary differential 
equations for the space-dependent expansion coefficients. For this set of 
equations we introduce a novel general numerical solution procedure. Our 
method enables one to solve kinetic boundary layer problems for linear 
kinetic equations obtained by linearization around a rather arbitrary 
spherically symmetric local equilibrium state. However, in the present 
paper we shall confine ourselves to the specific application discussed in the 
preceding paragraph. 

Though one may expect the theory developed in this paper to provide 
a significant improvement even if the local equilibrium reference state is 
only a rough approximation to the actual state of the gas mixture, we shall 
introduce our method for a system for which such a picture is also well 
justified physically. The system considered is a light carrier gas with a small 
admixture of a vapor consisting of heavy molecules. In such a system, colli- 
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sions between the vapor molecules are much less important than collisions 
of vapor molecules with the carrier gas. Hence, the distribution function for 
the vapor molecules obeys a linear kinetic equation that, moreover, can be 
well approximated by the Klein-Kramers (7"8) equation for noninteracting 
Brownian particles. However, one must take into account that the 
temperature of the background medium is inhomogeneous, due to the 
heat of condensation released at the droplet. On the other hand, the kinetic 
boundary layer for the gas is thinner than the one for the vapor, due to 
the difference in mean free paths. Hence, the gas can be considered to be 
in local equilibrium till very close to the droplet surface; thus the gas is 
characterized completely by its temperature profile. 

The Klein-Kramers equation for Brownian motion in a medium with 
inhomogeneous temperature was discussed in an earlier paper. (9) In 
Section 2 we state the results of that paper and show how the phenomeno- 
logical parameters appearing in that equation, the friction constant and the 
thermophoretic force, should be chosen to obtain a correct description of 
diffusion and thermodiffusion in a gas mixture with a given temperature 
profile. In Section 3 we then formulate the boundary value problem that 
must be solved to obtain the droplet growth rate. The treatment closely 
follows an earlier paper treating condensation from a pure vapor. (3) We 
also propose a simple first approximation for the temperature profile in the 
gas. 

In Section 4 we show how the modified Klein-Kramers equation can 
be transformed into an infinite set of coupled equations for the Burnett 
moments of the distribution function. For  the case of constant temperature, 
a presumably complete set of fundamental solutions of truncated versions 
of this hierarchy could be constructed explicitly by means of a suitable 
ansatz, and the boundary problem could be solved by constructing a 
suitable linear combination of these special solutions. In the presence of a 
temperature gradient, the explicit form of the fundamental solutions is no 
longer known, so we chose to construct them by integrating the set of 
moment equations numerically. The system of equations shows a severe 
numerical instability, however, for reasons inherent in the physics of the 
problem. A method to deal with this instability is also proposed in 
Section4. In Section 5 we test the proposed numerical procedure, and 
estimate the accuracy that can be reached with it, by applying it to the 
case of constant temperature, and comparing with the known semianalytic 
solution of that problem. 

In Section 5 we also treat some simple model problems containing 
temperature gradients, and study various convergence properties of our 
procedure. In Section 6 the method is used to treat a simplified version of 
the actual condensation problem, using parameters that correspond to 
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condensation of mercury vapor in a background of neon. This first semi- 
realistic application allows one to obtain estimates for the influence of the 
various physical effects included in our description. Since the effects turn 
out to be small, the simple approximation suffices for the case considered; 
a more consistent treatment is in principle possible with our method, 
however. In the concluding section we summarize the results and limita- 
tions of our treatment and discuss some possible further applications, both 
to more realistic condensation problems and to other problems involving 
kinetic boundary layers. 

2. B A S I C  E Q U A T I O N S  

The distribution function P(v, r, t) for the velocities v and positions r 
of an assembly of noninteracting Brownian particles moving in a back- 
ground medium with temperature T =  (k/~)-l evolves in time according to 
the Klein-Kramers equation (7'8~ 

~ + v  P(v, r, t) v +  P(v, r, t) (2.1) 

where m is the mass and 7 the friction coefficient of the particles. In an 
earlier paper ~9) we studied the case where /~ and ? depend upon position. 
We showed that the diffusion equation derived from (2.1) by the 
Chapman-Enskog procedure (1~ does not describe thermodiffusion. To 
include this effect, a term 

F(r) 0 dT 
_ _ o _ _  m c3v P with F ( r ) = a ( r )  dr (2.2) 

must be added on the left-hand side of (2.1). 
As we shall apply (2.1) to the motion of heavy vapor molecules in a 

light background gas, we must choose ?(r) and a(r) in such a way that the 
equation obtained for nv(r, t ) = ~ d v  P(v, r, t) by applying the Chapman 
Enskog procedure to (2.1) supplemented by (2.2) is identical to the one 
obtained from kinetic theory for a binary gas mixture. (11) The equation of 
continuity for n v reads 

0 0 
~ n v ( r ,  t ) =  --~rr.Jv(r, t) 

j r(r ,  t) = f dv vP(v, r, t) = ev(r, t) nz(r, t) 

(2.3) 
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The quantity C v is the sum of the hydrodynamic velocity of the mixture 
and the diffusion velocity. As we shall be considering phenomena on a time 
scale much slower than the one needed for equalization of the total gas 
pressure and, moreover, shall be considering the limit 

p v =  m v n v  ~ m ~ n ~ =  pG (2.4) 

where quantities with index G refer to the background gas, the 
hydrodynamic velocity will always be vanishingly small [(2.4) ensures that 
the vapor flow towards a droplet does not translate into a hydrodynamic 
flow]. The velocity Cv is then given by (al) 

C v =  - - D I 2  ~rr "q- ~ T a--r 

where n denotes the total density, D12 the binary diffusion coefficient for 
the vapor in the background gas, and sT the thermal diffusion factor. 

For spatially homogeneous fl and 7, (2.1) leads to  (7's'1~ 

0rt v __1 V2rt v (2.6a) 
3t mfl7 

whereas (2.3) and (2.5) result in 

On v 
0t --  D12 V2n v (2.6b) 

Hence, 7(r) should be chosen in accordance with the Einstein relation 

7(r) = [mvfl(r)  D12(r)] - ~  (2.7) 

The lowest-order stationary solution of (2.1) for the one-dimensional 
version of (2.1) supplemented with (2.2) reads (9) 

n v ( X )  
_ nv(x ) _ ]f~ dT(x ' )q 

cst .exp d x ' p t x ) a t x ) - - 7 - 7 - , !  . . . . . . .  (2.8a) 
n(x) p~(x) IJ~o a x  A 

which implies 

• ("4 n....ff. V dT 
= fl(x) a(x) ~ (2.8b) 

d x k n J  n a x  

whereas putting Cv equal to zero in (2.5) results in 

. . . .  e r  (2.8c) 
dx n T d x  
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Hence, we should take 

a(r) = --keT(r) (2.9) 

in (2.2) to obtain consistency with the hydrodynamics of binary mixtures. 
For the quantities D12 and C~T one may take experimental values for 

the limit of low vapor concentration. In our calculations we shall employ 
the values derived from kinetic theory (in first order) for a mixture of 
Lennard-Jones molecules. For D~2 this means [see (7.3-38b) of ref. 11] 

3 [ (2m12~1/21-1 
D12 - g'2(l' 1)*(Z*) na~2 (2.10a) 8,/; J 

with 

k T  1 1 1 1 
r * = - - ,  ~,2= (E1~2) '/2 , ~12=~ (~1+ ~2), + 

/]12 m12 m l  m2 
(2.10b) 

with mi, ei, and cr i the mass and the Lennard-Jones parameters of the two 
constituents, and g?(t,r), the reduced/2 integrals tabulated in Table I-M of 
ref. 12. Our choice for ei and a~ will be specified later. For the thermal 
diffusion ratio k r = n v e T / n  we use the expressions (8.2-50), (8.2-36), and 
(8.2-31) of ref. 12; for ~v in (2.9) we use the limiting value for nv  going to 
zero. 

3. THE B O U N D A R Y  VALUE PROBLEM 

As argued in earlier papers, (4'3) it suffices for the discussion of 
condensation at temperatures far below the critical temperature to study 
stationary solutions of (2.1), supplemented with (2.2), for the space outside 
of a sphere of given radius. We shall further assume that the gas mixture 
far away from the condensing droplet is at equilibrium with temperature 
Too and densities noo and n voo- It is then convenient to measure velocities 
and lengths in units of the thermal velocity Vth and the velocity persistence 
length l at infinity 

Vth=(mvfloo ) 1/2, / =  7ool/)th (3.1) 

where 7oo is obtained by substituting the values at infinity in (2.7) and 
(2.10). We further introduce the abbreviations 

t = T/Too, G = 7/700 (3.2) 
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For the latter quantity we obtain, using the ideal gas equation of state for 
the mixture, 

(2(i'll*It(r) T*]  t(r) 1/2 
G(r) - (3.3) 

f2o,1)*(T *) 

where T* is related to Too by (2.10b). 
In view of the symmetry of the problem, the solution of (2.1) depends 

only on the magnitudes of v and r and on / z=0"f ,  and it obeys the 
equation (5) 

V# ~rP(V, #, r)= - v  - -  
1 - # 2  0 G~__.( + 0 )  

r 0# + 8v v ~vv + ( t - 1 ) a V ~  

+C~rdrr # + --v P(v, #, r) (3.4) 

The term on the left and the first term on the right correspond to the 
streaming term v. OP/Or in (2.1). The second and third terms correspond to 
the collision term in (2.1); as we shall later expand in terms of the eigen- 
functions of the second term, the explicit form of these two terms in the 
variables v and # will not be needed. The last term in (3.4) corresponds to 
the thermal diffusion correction (2.2). 

We shall be looking for solutions of (3.4) for a given temperature 
profile, such that the density nv(r) approaches n w  for r ~  c~ and such 
that the distribution of vapor particles injected into the gas mixture at the 
droplet surface r - - R  has a prescribed form 

P(v, #, R) = g(v, #) for # > 0 (3.5) 

In general, g may be a functional of the velocity distribution of particles 
impinging on the droplet, but in this paper we shall confine ourselves 
to the case of a "black" droplet. ~ Such a droplet absorbs all particles 
impinging upon it and spontaneously emits particles with a Maxwell 
distribution at the droplet temperature tD and the corresponding saturated 
vapor density ns(tD): 

gB(V, #) = ns(tD) r tD) (3.6a) 

~bo(v; tD) = (27ttD) -3/2 exp( - vZ/2tD) (3.6b) 

The solution PB(v, #, r) of (3.4) for a black droplet can be written as 
a linear combination of the solutions of two classical problems of boundary 
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layer theory. The first is (a three-dimensional variant of) the Milne 
solution(13) PM, defined by 

gM =0,  JvM = - r - 2  (3.7) 

It corresponds to a totally absorbing sphere toward which a steady particle 
current per solid angle of unity flows; the associated density approaches 
nMo~ at infinity. The second constituent of Ps  is an albedo solution (13) PA, 
defined by 

gA(v, #) = ~bo(V; tD); nA~ = 0 (3.8) 

which corresponds to a sphere emitting particles with unit density and 
Maxwellian velocity distribution, and absorbing all particles returning to it. 
In terms of these two solutions, the solution sought for can be written as 

PB(v, #, r )  = nvo~ PM + ns(tD) PA (3.9a) 
l 'l M o o 

The associated current density equals 

jB(r) - f dv v#PB(v, #, r) (3.9b) 

Solutions for "gray" droplets, which do not absorb all vapor molecules 
reaching them (and have a correspondingly reduced spontaneous emis- 
sion), (3~ could also be obtained by the present formalism; we shall not 
consider such variations in the present paper. 

In principle, the temperature profile t(r) that enters into (3.4), and that 
in turn determines G(r) and er(r)  if we assume uniform pressure and an 
equation of state (in our case the ideal gas expression) for the background 
gas, should be determined by solving the Navier-Stokes equation for the 
background gas, using the appropriate boundary condition at the droplet 
surface and treating the kinetic energy transfer from the vapor to the gas 
due to collisions, which follows from a knowledge of Pe,  as a heat source. 
However, since the present paper is devoted mainly to a discussion of our 
solution procedure for (3.4), and since this procedure will be independent 
of the expression chosen for t(r), we shall instead use an assumed 
temperature profile of the form 

t(r) = 1 + ([D - 1)R/r (3.10) 

where tD is the scaled droplet temperature tD decreased by the temperature 
jump at the droplet surface. The latter will be determined in a way 
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described in more detail in Section 6, using the results obtained by Hubmer 
and Titulaer. (14~ The temperature profile (3.10) causes a heat current 
density in the gas given by 

q(r) = 2(7 D -- 1 )R/r  2 (3.11) 

where q is measured in units of kTooVth l -3  and 2 is the heat conductivity 
of the background gas, measured in units of kVth 1-2. For )c we shall use the 
first-order kinetic expression [see Eq. (8.2-31) of ref. 12]. To obtain an 
estimate for the droplet temperature tD during quasistationary condensa- 
tion we shall require that the heat carried away by the background gas is 
balanced by the heat of condensation released by the vapor particles upon 
absorption by the droplet: 

- qo4~rR2JB(R) = ) ~ ( t D  - -  1 )- 4~R (3.12) 

where we take for qo the heat of condensation at tD in units of kTo~. The 
quantity je has been defined in (3.9b); it depends on tD via the profile t(r) 
entering into (3.4) and via the boundary condition (3.6). Of course, the 
expression on the left in (3.12) is not exact either: we have neglected the 
fact that the velocity distribution PB(v, ~, R)  of the incoming particles dif- 
fers from the Maxwellian at tD that would hold for equilibrium condensa- 
tion. (3~ However, the profile (3.10) with tD determined from (3.12) may at 
least serve to obtain first estimates for the influence of the various effects 
included in (3.4) on the rate of condensation, which is our aim in the 
present paper. 

4. T H E  M O M E N T  E Q U A T I O N S  A N D  THEIR  S O L U T I O N S  

The partial differential equation (3.4), which can be written in 
shorthand as 

can be transformed into a set of coupled ordinary differential equations by 
expanding in terms of the Burnett functions, which are the eigenfunctions 
of %. We therefore write ~5'15) 

P(v, #, r) = Co(V) ~ ~.k(r) ~O.k(v, #) (4.2) 
n ,k=O 

where Co(V) is the Maxwell distribution at t = 1. The action of the various 
terms on the Burnett functions is given by 

822/67/1-2-23 
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~[ 2 n + 2 k + 3  .~/2 
= ( k +  1) (L(2k-+l)(2k+3)J  8',,,k+1 

2n m 

+ k (2/72--1)(2k+ 1)J r 

-[(2k 2n+2 ]J/2 
Z 1-~-2k + l iJ g'''+ ,.e ,} 

S~l @.k-- V(1-- #2) OV-- O.k 
op 

{ _ [  2 n + 2 k + 3  _]172 
= k ( k +  1) L(2/7: +- i )(2k + 3 )0 ~n,k+l 

(4.3a) 

[ 2n ]~/2 F 2 n + 2 k + l  1 ~/2 
+ (2k+ l ) (2k+3)3  ~"-"k+ '+L(2k-Z-1)(2k+l  ) ~,,k-~ 

[ 2n+2 ]~/2 
- L(2k_~-2~+l)_ j ~,~+~,k_~t (4.3b) 

%r  v" V+~v v r (4.3c) 

cg~ r r --= V2r = -- r(Zn + 2)(2n + 2k + 3)] ~/2 r + ~,k (4.3d) 

[ 2.+2k 3 1,, 
= - ( k +  1) L(2k+ l ) (2k+3)]  r 

[ 2n + 2 j 1/2 
+ kk(2k -]-)7-2~+1 ) ~b0q~n+,.k , (4.3e) 

In (4.3a) and (4.3b) we omitted the factor r since o% and ~ commute 
with it. 

Substitution of (4.2) and (4.3) into (4.1) leads to an infinite set of 
differential equations for the bnk(r), which can be written in the form 

dN~ - 5~+GC~ "~ (4.4) 
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where ~ is the vector with components b,~. For actual calculations this set 
must be truncated; as in earlier work, (5) we use the truncation prescriptions 

DN: b , k = 0  for n + k > N  (4.5) 

which lead to ( N +  1) (N+2) /2  coupled equations. This prescription was 
found (4'61 to lead to very good convergence with increasing N for R > 1.5, 
and to reasonable convergence for lower R. We shall use the notations in 
(4.4) for the truncated version as well. 

The truncated matrix 5 0 is symmetrical and can therefore be 
diagonalized. From (4.3a) one sees that it is odd in k. Since, moreover, 
the prescription (4.5) leaves more even than odd moments, its rank, and 
therefore its number of nonzero eigenvalues is at most equal to twice 
the number of odd moments; this maximal rank equals the rank found in 
practice: 

, = �89 1) (X+ 2 ) -  [N/2]  - 1 (4.6) 

with In]  denoting the integer part of n. We shall denote the diagonal form 
of 5o by D and the matrix effecting the diagonalization by U: 5 o = U[DU'. 
If we denote the matrix in square brackets in (4.4) by V, we obtain from 
(4.4) 

d b = d  D.  ~ , . ~ =  ~ t . ~ .  U.  k j t . b _ _ V . h  (4.7) 
dr ID" -d r  

or, more explicitly, if we assign the last components in b to the eigenvectors 
of ~ with eigenvalue zero: 

d Q~;1 O~(bl'~ (]k/11 ~/12~(~1 ~ (4.8) 
o)t, bU=\v~, v~U\b2) 

The part b2 can be eliminated, and one arrives at the set of coupled 
differential equations 

d 
drr bl = D ll i" [Vll --V12" V221~ V213 ~ bl (4.9) 

For the case of constant t(r), the set of equations (4.4) can be further 
reduced by postulating (15) for ~nk(r) the space dependence ~(~)(r)= (;0 ankKk+l/2(qxr) with Kin(y) the Hankel function of imaginary argument. 
This reduces (4.4) to an algebraic generalized eigenvalue equation for the 
qx which is then solved numerically. One finds a solution with q = 0 and a 
Jordan associated solution; these are the Chapman-Enskog solutions, 
namely the equilibrium solution and a solution carrying a particle current 



358 Widder and Titulaer 

density proportional to r 2. In addition there are ( , /2 ) -1  pairs of finite 
semisimple real eigenvalues q;. of opposite sign. These values approach 
square roots of integers for N--* o9; hence the corresponding solutions of 
(4.8) grow exponentially on the scale of a mean free path in the negative 
or positive r direction. They are boundary layer solutions of the Boltzmann 
equation for interior (small-r) and exterior (large-r) spherical boundaries, 
respectively. The solutions of the Milne and albedo problems are obtained 
by postulating for the solution a linear combination of the two 
Chapman-Enskog solutions and the boundary layer solutions for interior 
boundaries. (Exterior boundary layer solutions would come into play for 
systems enclosed within a spherical container, a situation not considered in 
the present paper.) The condition at infinity fixes the coefficient of one of 
the Chapman-Enskog solutions; the condition (3.5) at r - -R is replaced by 
the Marshak (16) equivalent 

f,>o v2 dv d# P(v, R) @n, 2k+ I(V, #) #, 

= ~  v2dvd#g(v,#)$n,2k+l(v,#) for n+2k+l<<.N (4.10) 
> 0  

These are precisely ,/2 conditions; hence, they suffice to determine the solu- 
tion in DN approximation uniquely. For slowly varying t(r) it appears 
reasonable to assume that the structure of the space of local solutions (two 
slowly varying solutions and two spaces of dimension , / 2 -  1 of exponen- 
tially rapidly decreasing and increasing solutions) remains the same, so the 
ansatz for solving the boundary value problem may stay the same as well. 
However, the method used for obtaining the explicit form of the solutions 
no longer works. 

Already the Chapman-Enskog solutions can no longer be written in 
closed form; for higher DN approximations one needs Burnett correc- 
tions (11) of increasing order, which involve a prohibitive amount of analyti- 
cal work. Also, efforts to treat the space dependence of t as a perturbation 
did not lead to a well-convergent scheme. This is not too surprising since 
t(r) and dt/dr give rise to terms with additional factors of r 1 and r -2, 
respectively, and some other terms in the perturbation involve additional 
derivatives. However, the possibility that a useful asymptotic perturbation 
theory would have resulted could not have been excluded a priori. We 
therefore decided to integrate Eqs. (4.9) numerically inward, starting from 
large r, where the influence of the spatial variation of t can be assumed to 
be small. For this purpose we first replace t(r) by the modified profile 

7(r) ~ 1 + It(r) -- 1 ] s(r) 
(4.11) 

s(r)=O for r>~R+; s ( r ) ~ l  for r ~ R  
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The Chapman-Enskog and interior boundary layer solutions for r >~ R+ 
are then known, and the numerical integration may start at R+. Sub- 
sequently, the behavior for increasing cutoff parameter R+ is considered. 

A straightforward numerical integration does not give useful results, 
however. Since (4.4) [or (4.9)] has solutions that grow exponentially fast 
with decreasing r, such solutions will build up from roundoff errors, 
and soon overwhelm the Chapman Enskog and more slowly increasing 
boundary layer solutions. However, all that is needed for solving our 
boundary layer problems is a complete set of solutions in the space in which 
the solution should lie. To obtain such a set we first integrate the solutions 
at r = R+, obtained by the procedure of ref. 5, inward over an interval Ar. 
The solutions so obtained from the Chapman-Enskog and interior 
boundary layer solutions are denoted by b~ ( i=1,2)  and bf(r)  
( j =  1 ..... , / 2 -1 ) ,  respectively. Due to amplified roundoff errors, they all 
tend to converge to the fastest growing boundary layer solution, i.e., to the 
one that decreases fastest as one moves away from the sphere. To remove 
these unwanted admixtures, we introduce linear combinations of the type 

[r '=R+ 
J 

(r') = (r')/Ir j (r')ll (4.12) 

k ~ j  

with the c% and fljk chosen such that they minimize the norms Ip~~ and 
II~j fl. In terms of the matrices 

~ j k -  b f  .bk;  N~-= b~ b~ (4.13) 

these coefficients are 

c%= - ~  Ni~. ~ ;  f i j k = ~ l / ~ ] f  ~ (4.14) 
k 

- -  r t We now replace the b~ ') and hj (r') by ~~ and ~j ( ) ,  respectively, 
and repeat the procedure until we have reached r = R. 

At r = R we so obtain a complete set of solutions with which we may 
fulfill the boundary condition (3.5) in the approximation (4.10); for this 
purpose the components b2, eliminated in (4.9), have to be reconstructed. 
For later use we note that the solutions ~0 contain the "actual" 
Chapman-Enskog solutions with coefficient unity, since the Chapman- 
Enskog solutions vary slowly, and hence do not build up from numerical 
noise to any appreciable extent. In the following sections the numerical 
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procedure just outlined will first be tested for the case of constant t(r), 
where the "actual" results are known, and then be applied to cases with 
space-dependent t( r ). 

5. N U M E R I C A L  TESTS A N D  CONVERGENCE PROPERTIES 

As a first test of our numerical procedure we apply it to the Milne 
problem with constant temperature [i.e., we put t(r)= 1, G(r)= 1 in (4.4)], 
and compare with the results obtained using the method of ref. 5, which are 
essentially exact within the respective DN approximations, defined in (4.5). 
In Table I we list the relative deviations in the quantity nM~ defined after 
(3.7) in D2 approximation for R = 5 and for various values of the starting 
point R+ of the numerical integration, the step size As, and the interval Ar 
after which the updating procedure (4.12) is carried through. We see that 
As = 0.1, Ar = 1 yields data of sufficient accuracy. 

Similar data for R = 5 in the D4, D6, and D8 approximations are given 
in Table II. We see that the accuracy obtainable depends only slightly on 
the order of the approximation. However, for D 6 and D8 one must use the 
updating procedure (4.12) after each integration step; this appears 
reasonable, since with increasing N, boundary layer solutions with ever 
higher growth rates are introduced. 

Table I. Relative Discrepancy Between the Numerical Result for nM~ and the 
Value Found by the Semianalyt ical Treatment of ref. 5 in D 2 Approximation,  
for R = 5  and various values of R+ ,  as a Function of the Step Size As of the 

Numerical Integration and the Interval Ar After  Which the 
Updating (4.12) Is Carried Out 

D i s c r e p a n c y  

R+ As Ar=lO A r = l  Ar=lO 1 Ar=lO 2 Ar=lO 3 

10 2 l 2 x 1 0  3 2 x 1 0  3 

10 -1  8 x l 0  -7  4 x 1 0  - v  4 x 1 0  -7  

10 2 1 x 10 s 8 )< I 0  11 2 x 10 11 2 x 10 11 

10 -3  l x l 0  -4  7 •  -1~ l x l 0  10 2 x 1 0  lo 6 x 1 0  10 

10 3 1 l x 1 0  3 2 x 1 0  3 

10 -1 2 x 1 0  -3  3 x 1 0  -7  3 x 1 0  7 

10 - 2  l x l 0  -2  l x l 0  -7  7 x 1 0  8 2 x 1 0  8 

10 4 1 a 2 X 10 3 

10 1 a 8 x 1 0  5 8 x 1 0  5 

a Bars  cha r ac t e r i z e  i m p r a c t i c a b l e  c o m b i n a t i o n s  o f  R+, As, a n d  Ar. 
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Tab le  I1. S i m i l a r  Data  As in Tab le  I, f o r  D4, De, and D 8 Approximations 

Discrepancy 

D N R+ As Ar = 1 Ar = 10 

D 4 10 2 10 i 8 x 10 7 8 x 10 - v  

10 - z  1 x 10 -1~  1 • 10 -10 

10 3 l 0  -1  8 x  10 - 7  8 •  10 _7 

10 - 2  9 x 10 - 8  9 x 1 0 - 8  

10 4 10 - I  1 X 10 - 5  6 X  10 `5 

0 6 10 2 10 -1  - -  2 x  10 - 6  

[ 0  - 2  - -  4 X  10 -1~  

t 0  3 10 i _ _  2 X 10--6 

D 8 10 2 lO -1  4 •  10 ~6 

10 3 10 -1  - -  4 •  10 _6 

For a first test of the performance of our procedure in the presence of 
temperature gradients we considered (4.4) with the temperature profile 
(3.10), but with c~r= 0 and the simplified expression G ( r ) =  t(r) -1/2 instead 
of the full expression (3.3). For s(r) in (4.11) we chose 

R +  - - F  
s ( r ) - - -  for R<~r<~R+ (5.1) 

R+ - R  

The Milne solution should have j ( r ) =  r 2, irrespective of t(r), as a conse- 
quence of mass conservation. The same r dependence should appear in bol 
in (4.7). This behavior was indeed found. In fact, the additional deviations 
from an r -2 dependence introduced by a change from ?D = 1 to tD = 1.1 in 
(3.10) were many orders of magnitude smaller than those already present 
due to the finiteness of Ar and As. 

To estimate the influence of the cutoff radius R+ in (5.1), we solved 
the simplified Milne problem for R =  5 and tD = 1.1 for several values of 
R+. The results are given in Table III, together with the extrapolations 
n u ~  obtained from two successive values using the formula 

n M ~ ( R  + ) = nM~ + cR + l (5.2) 

We see that knowledge of nM~(100) and nM~(200) suffices to determine 
nM~ to a relative accuracy of 10-5; the use of higher R+,  and hence of 
longer integration intervals, brings no significant improvement. The same 
result was found in D 6 and D 8 approximations. 

The dependence of the results on the order of approximation N is very 
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Table III. The Dependence of n i =  o on the Cuto f f  Radius R+ 
Introduced in (4.11), for R = 5  and t o = 1 . 1 ,  

Together w i t h  the Values n i ~  Obtained by the Fit (5.2) 

D2 D4 

R+ nM~(R+) nM~ nMo~(R+) nM~ 

100 0.261219 0.263735 
200 0.261122 0.261024 0.263635 0.263535 
300 0.261089 0.261023 0.263601 0.263534 
400 0.261072 0.261023 0.263584 0.263534 

1000 0.261043 0.261023 0.263554 0.263534 

similar for 70 = 1 and tD = 1.1. By extrapola t ing the N dependence using 
the procedure  described in ref. 5 we find for the same paramete rs  and 
simplifications as before 

nM~o(7 D = 1 ) = 0.2667 _+ 0.0002 (5.3a) 

nM~(~D = 1.1) = 0.2652 _ 0.0002 (5.3b) 

Thus,  the effects of a t empera ture  gradient  in our  example  are abou t  eight 
times larger than  the numerical  uncertainty.  In the interval 1 < tD < 1.1, 
nMoo(tD) behaves nearly linearly, with deviat ions of the order  of the 
numerical  error  given above.  

In  the case of the albedo p rob lem similar tests were carried out. As a 
first test we calculated the current  density JVA for tD = 1 and tD = 1. The 
relat ion 

JVA(tO = tD = 1) = r-2/nM~(TD = 1) (5.4) 

is satisfied within the calculat ional  accuracy in each O N approximat ion .  
For  to= 1.1, with G(r) and the other  pa ramete rs  chosen as before, we 
obtain  

jva(tD = 1.1, tD = 1 .0)=  r -2"  [4.020 _+ 0.005] (5.5a) 

jvA(t D = 1.1, tD = 1.1) = r - 2 .  [4.137 + 0.005] (5.5b) 

Thus,  in this case the effects arising f rom a t empera ture  gradient  are abou t  
25 times larger than  the numerical  error. In the interval 1 < tD < 1.1 the 
calculated quanti ty,  Jw" r2, again depends linearly on temperature .  
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6. F IRST N U M E R I C A L  R E S U L T S  FOR THE 
C O N D E N S A T I O N  P R O B L E M  

In this section we apply the method developed in Section 4 to the 
condensation problem described in Section 3, using the approximate 
temperature profile (3.10). Vapor and carrier gas consist of Lennard-Jones 
molecules with parameters corresponding to mercury and neon, respec- 
tively. This choice was made to avoid complications arising from internal 
degrees of freedom; on the other hand, choosing a mixture of noble gases 
would lead to high densities due to the high saturation pressures, and thus 
make the use of the Boltzmann equation problematical. The parameters for 
mercury were determined by first calculating the second virial coefficient 
B(T) from the critical quantities Tc and Pc using Eq. (4.2-4) of ref. 12 and 
then using the procedure given in w of ref. 12. The resulting values are 
cq = 3.10/~ and el/k = 975 K. 

For  neon we used the values er 2 = 2.78/~ and e2/k = 34.9 K, taken from 
Table 3.6-1 of ref. 12. Further we chose the temperature Too of the ga s 
mixture far from the droplet equal to 483 K and the total gas density no  
far from the droplet equal to lOOns(Too). With these choices, we find the 
velocity persistence length l of the vapor molecules and the mean free path 
l G of the gas, defined by (3.1) together with (2.7), and by Eq. (2.4b) of 
ref. 4, respectively, as 

l =  1.18 x 10 -s cm (6.1a) 

lG=0 .583x10  5cm (6.1b) 

These values are large compared to the atomic diameters a I and a2, 
justifying the use of the Boltzmann equation; moreover, l is about twice as 
large as IG. 

To determine the effective droplet temperature tD entering (3.12), we 
use the approximate expression 

tD - tD 1 
- 1 ( 6 . 2 )  

tD-t(oo) I + x r R - I + x ' r R  -2 

proposed in ref. 14, with the values x r = 2.77, x ) =  4.97, calculated there for 
Maxwell molecules (as was noted in ref. 14, at least x r  appears to be rather 
insensitive to the specific form of the intermolecular interaction). Equation 
(6.2) is valid only for the case of complete energy accommodation of the 
gas molecules reflected from the droplet surface; expressions for incomplete 
energy accommodation are discussed in ref. 14. For  the heat conductivity 2, 
the heat of condensation q0, and the thermal diffusion ratio e r  we neglect 
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the temperature dependence and use the values for Too = 483 K, which in 
our units are 

2= 471,500kvthl 2 (6.3a) 

q0 = 14.8kT~ ; c~ r = 0.429 (6.3b) 

The values for qo and the saturation density ns(T) were taken from ref. 17. 
Using these parameters, and the procedures outlined in Section 3, we 

performed calculations for droplet radii of 2l, 5l, and 10/ and vapor 
densities n w of 2ns(To~) and 3ns(T~). To obtain a first estimate for the 
droplet temperature TD we first carried out the full program described in 
Section 3 in the D2 approximation, defined in (4.5); this gives the estimate 
t~ ). Next we solved the Milne and albedo problems for two temperatures 
t~ -) and t~ +) with t~ -~<  t~ )<  t~ +), using the procedure described in 
Section 4, in the D2, 04, 06, and D 8 approximations. For the simplified 
problem obtained by omitting the last two terms on the right in (4.4) and 
putting G =  1 in the second term, we also calculated DN up to N--16, 
using the method of ref. 5. The values obtained for nMoo and JVA in the 
latter problem depend very regularly on the order of approximation N and 
allow one to estimate the exact values by extrapolation. (5) Since the 
dependence on N is very similar in the simplified and the full problem, this 
allowed us to estimate the error made by truncation at N =  8 in the full 
problem as well. In view of the linearity of nM~ and JvA as functions of tD, 
discussed in Section 5, the quantities nM~(tD) and jvA(tD) in the interval 
t k ) <  tD < t~ +) were determined from the values so calculated at t(v ) and 
t~ +) by linear interpolation. These functions were then used to determine 
the droplet temperature tD from (3.12), using (3.9) and (6.2). From the 
current density JB at that temperature, defined in (3.9), we finally obtain 
the growth rate/~ of the droplet using 

= --jB(tD)/n, (6.4) 

where n~ is the density of liquid mercury for the given temperature and 
pressure. 

Our results for _~, in units of 10-SVth, are given in Table IV. In addi- 
tion to the results obtained from the full equation (last line of the table), 
we also give the results obtained from the simplified equation, neglecting 
all effects of temperture gradients (first line). To estimate the influence of 
the separate terms, we also give results obtained by including only the first 
three terms on the right in (4.4), omitting thermal diffusion (second line), 
as well as by including the fourth term, but omitting the third term and 
putting G = 1 in the second (third line). 
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Table IV. Several Results for the Droplet Growth Rate F~ in Units of 10-5vt~, 
for R = 2 / ,  5/, and 101 and nv~=2ns(To~) and 3ns(T~) a 

R/l 5 2 5 10 
nv~/ns 2 3 3 3 

R/10 5Vth 0.1320 0.4460 0.2619 0.15074 
_+ 0.0004 + 0.0008 _+ 0.0006 • 0.00010 

0.1316 0.4443 0.2613 0.15077 
0.1307 0.4415 0.2584 0.14847 
0.1304 0.4399 0.2578 0.14851 

"The error bounds (upper bounds on the numerical error) do not change within each row. 
The last line contains our final results; the significance of the other entries is described in the 
last two paragraphs of Section 6. The parameters used correspond to mercury condensing in 
neon. 

We see that, except for small R, the effect of thermodiffusion is by far 
the largest one. Since thermodiffusion impedes the flow of vapor molecules 
toward the warmer droplet, it must reduce the growth rate. Since, as we 
saw in the preceding section, the remaining gradient effects act in opposite 
ways on the Milne and albedo parts of the solution PB defined in (3.9a), 
the sign of the net effect cannot be predicted a priori, and it appears to 
change as R increases. The overall effect is small (of the order of 1%), but, 
in all cases considered, larger than the upper bound for the numerical 
error, also given in Table IV. Finally, we note that the growth rate k is 
always very small compared with the thermal velocity Uth , which justifies 
our use of the stationary Klein-Kramers equation. 

7. D I S C U S S I O N  A N D  C O N C L U D I N G  R E M A R K S  

The main result of this paper is the development of a reliable method 
for solving boundary layer problems for linear kinetic equations that 
involve space-dependent collision operators. Since the method introduced 
in Section 4 for eliminating the effects of the intrinsic numerical instabilities 
relies on the preservation of the basic structure of the solution space 
(Chapman-Enskog, inner and outer boundary layer solutions), it can only 
be expected to work in cases in which the space-dependent terms vary 
smoothly on the scale of a mean free path. This condition was clearly 
fulfilled in the applications treated in this paper. In fact, our basic method 
should remain applicable when much larger temperature differences 
between the droplet and the gas mixture at infinity exist. This can be the 
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case when droplets evaporate under the influence of externally supplied 
heat, or when strongly exothermic chemical reactions occur at the surface 
of the droplet. In such cases, the simple method we used to determine the 
droplet temperature would need to be improved, however: in principle, the 
kinetic equation for the Brownian particles and the hydrodynamic (heat 
conduction) equation for the background gas should be solved together in 
a self-consistent manner, in such a way that the sources for the heat con- 
duction equation are deduced from the solution of the kinetic equation for 
the Brownian particles, as sketched in Section 3. 

Clearly, our method is not restricted to spherical geometries; the main 
requirement is that the space dependence of the distribution is governed by 
a single generalized coordinate. This is also the case for a half-space, or the 
space between two parallel plates, as well as for the space outside of a 
cylinder or between two coaxial cylinders. In cases involving two boundary 
layers, however, the two should be well separated, since one needs a 
starting point for the integration that lies well outside of the boundary 
layers. 

Our choice of the basic equation (2.1) with the extra term (2.2) was 
made for two basic reasons: the fundamental equation is linear, and for the 
case without temperature gradients highly accurate solutions are available 
for comparison. However, the method could also be applied to the general 
Boltzmann equation in cases where a linearization around a local equi- 
librium distribution is appropriate. In such an application a self-consistent 
solution of the linearized Boltzmann equation and the Navier-Stokes equa- 
tions, which determine the local equilibrium solution, would be required. 
The procedure would be comparable to the usual treatment of the non- 
linear BGK equation/18) The use of the linearized Boltzmann equation in 
the boundary layer is not without problems: deviations from local equi- 
librium are known to be far from negligible there. However, since the 
Boltzmann collision operator involves an integral over the distribution 
function of the collision partners, their effect on the collision term may not 
be too severe. 

Some of the objections alluded to in the preceding paragraph could 
also be raised against our application of our formalism to the case of the 
condensation of mercury in neon. The mass ratio between the components 
of the mixture as well as the ratio between the characteristic lengths given 
in (6.1) are small, but not completely negligible. However, in view of the 
smallness of the effects found, it appears reasonable not to worry too much 
about effects of higher order in these ratios. On the other hand, the effects 
calculated, though small, may be of practical importance if one attempts to 
analyze experiments on droplet growth, especially for not too small 
droplets, with the purpose of extracting information about absorption and 
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a c c o m m o d a t i o n  coeff ic ients  at  the  surface,  as d i scussed  in ref. 3. H o w e v e r ,  

s ince effects of  pa r t i a l  a b s o r p t i o n  and  a c c o m m o d a t i o n  were  n o t  c o n s i d e r e d  

in this  paper ,  we shall  n o t  pu r sue  this  subjec t  he re  any  fur ther .  
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